Commutators of flow maps of nonsmooth vector fields

نویسندگان

  • Franco Rampazzo
  • Héctor J. Sussmann
چکیده

Relying on the notion of set-valued Lie bracket introduced in an earlier paper, we extend some classical results valid for smooth vector fields to the case when the vector fields are just Lipschitz. In particular, we prove that the flows of two Lipschitz vector fields commute for small times if and only if their Lie bracket vanishes everywhere (i.e., equivalently, if their classical Lie bracket vanishes almost everyehere). We also extend the asymptotic formula that gives an estimate of the lack of commutativity of two vector fields in terms of their Lie bracket, and prove a simultaneous flow box theorem for commuting families of Lipschitz vector fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

Set-valued differentials and a nonsmooth version of Chow’s Theorem

In this note we present a simple application of the method developed by one of us in recent years to prove general smooth, nonsmooth, high-order, and hybrid versions of the maximum principle (abbr. MP) for finitedimensional, deterministic optimal control problems without state space constraints. As explained in Sussmann [3, 4, 5, 6], such versions can be derived in a unified way, by using a mod...

متن کامل

A Pontryagin Maximum Principle for systems of flows

We present a generalization of the Pontryagin Maximum Principle, in which the usual adjoint equation, which contains derivatives of the system vector fields with respect to the state, is replaced by an integrated form, containing only differentials of the reference flow maps. In this form, the conditions of the maximum principle make sense for a number of control dynamical laws whose right-hand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006